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Abstract. Sea ice thickness distributions display a ubiquitous exponential de-3

crease with thickness. This tail characterises the range of ice thickness produced4

by mechanical redistribution of ice through the process of ridging, rafting, and5

shearing. We investigate how well the thickness distribution can be simulated6

by representing mechanical redistribution as a generalized stacking process. Such7

processes are naturally described by a well-studied class of models known as8

Smoluchowski Coagulation models, which describe the dynamics of a popula-9

tion of fixed-mass ”particles” which combine in pairs to form a ”particle” with10

the combined mass of the constituent pair at a rate which depends on the mass11

of the interacting particles. Like observed sea ice thickness distributions, the mass12

distribution of the populations generated by SCMs has an exponential or quasi-13

exponential form. We use SCMs to model sea ice, identifying mass-increasing14

particle combinations with thickness-increasing ice redistribution processes. Our15

model couples an SCM component with a thermodynamic component and gen-16

erates qualitatively accurate thickness distributions with a variety of rate ker-17

nels. Our results suggest that the exponential tail of the sea ice thickness dis-18

tribution arises from the nature of the ridging process, rather than specific phys-19

ical properties of sea ice or the spatial arrangement of floes, and that the rel-20

ative strengths of the dynamic and thermodynamic processes are key in accu-21

rately simulating the rate at which the sea ice thickness tail drops off with thick-22

ness.23
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1. Introduction

The sea ice found in the polar oceans plays a major role in the Earth’s climate due to its24

high albedo and insulating properties. Inclusion of a dynamic sea-ice component in General25

Circulation Models (GCMs) is essential in accurate predictions of climactic behaviour, and the26

sensitivity of a GCM’s output to its sea-ice component has been well studied (e.g., Bitz et al.27

[2001], Holland et al. [2006]). Among the most difficult aspects of modelling sea-ice is the28

inclusion of the processes which create thick ice through the compressive fracture and piling29

of floes. Due to the complex nature of the interactions between ice floes and the many spatial30

scales at which this activity occurs, modelling sea-ice dynamics presents many challenges.31

32

Observations of sea ice indicate that population statistics often follow well defined distributions.33

Perhaps the best known is the tendency of the ice thicknesses to follow an exponential distri-34

bution above approximately 2 meters Wadhams and Davy [1986]. Additionally, as described35

in the work of Lensu Lensu [2003], the distance between ridges is approximately log-normally36

distributed. Aerial measurements have revealed that the area of individual floes in a sea ice37

population also follows a log-normal distribution. Given that all of these statistical properties38

of the sea ice population are a result of the redistribution process, a measure of the success of39

a model of sea ice should be its ability to reproduce them. Any multi-year simulations which40

include a sea ice component will require accurate representation of the sea ice’s extent and con-41

centration from year to year, and accurate modelling of the thickness distribution is necessary in42

determining the inter-annual behaviour of a population of sea ice, as it is the thickest ice which43

is most likely to survive a summer melt period.44
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45

A typical example of a sea ice thickness distribution is seen in Fig. 1, which displays the46

mean population thickness distribution obtained from multi-year sea ice thickness data taken in47

the Beaufort Sea (on semilog axes, the exponential tail is linear). Further examples of observa-48

tions of exponentially distributed populations may be seen in, the work of Wadhams (Wadhams49

[1983], Wadhams [1987]). The scaling constant of the distribution varies with time of year50

and geographical location. An exponential distribution does not accurately describe the entire51

population: the thinner ice, typically below 2 meters, deviates sharply from an exponential dis-52

tribution (Fig. 1). For this range of thicknesses the population dynamics are dominated by the53

thermodynamic processes. The ubiquity of the exponential tail in thicker ice strongly suggests54

that it arises as the consequence of some generic feature of the physical properties of the system,55

and is not due to a specific temperature regime, or a region-specific pattern in the atmospheric56

and oceanic forces acting upon the ice.57

58

Although the exponential form of the thickness distribution is well documented, the exact59

mechanisms responsible for this feature of sea-ice populations have not been fully explored.60

Most previous work on sea ice dynamics has focused on large-scale simulations using force61

balance models with complex redistribution dynamics (e.g., Feltham [2008],Hibler [2001]).62

Early force-balance models were unable to capture the details of the dynamics of the thickness63

distribution due to having a small number of thickness categories. For example, the original64

Hibler model Hibler [1979] only had two thickness categories. Variable thickness models de-65

rived from Hibler’s basin scale model (Hibler [1980], Flato and Hibler [1995]), produce a more66

realistic thickness distribution, although they typically overestimate the proportion of the pop-67
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ulation of thick ice. Aside from a proof-of-concept model by Thorndike Thorndike [2000], in68

which the merits of a more conceptual approach were suggested, the task of identifying the es-69

sential features of the dynamics which yield the exponential distribution has not been addressed70

in detail. Work using a stochastic formulation to examine the statistics of ridge spacing in ice71

pack has been done Lensu [2003], but the parameterisation of the ridging processes were highly72

abstracted, and this work does not provide a direct answer to the question of which essential73

features of redistribution produce the exponential tail.74

75

Another statistic of sea ice populations which has been studied is the distribution of floe areas76

Rothrock and Thorndike [1984]. Analysis of observations suggests that the floe size distribu-77

tion follows a power law. The result is unsurprising when the process of floe fragmentation is78

compared to that of the fragmentation behaviour of brittle solids. The fragment size distribution79

resulting from the fracture of brittle material has been found to take a power law distribution,80

with the value of the exponent depending upon the material Turcotte [1986]. The power laws81

used to describe the size distributions of fragments possess the characteristic property of self-82

similarity or scale-invariance. This self similarity is vividly illustrated in the visual similarity of83

images of sea ice taken at widely-separated scales (e.g.Rothrock and Thorndike [1984]).84

85

Our approach to studying the relationship between the redistribution process and the evolu-86

tion of the thickness distribution will make use of an idealised representation of redistribution.87

Rather than try to create a model which captures the full complexity of the redistribution pro-88

cess, we will instead represent ice-ice interactions as the simple process of stacking of floes on89

top of one another. This approach to modelling the thickness distribution dynamics allows us to90
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assess whether the ubiquitous exponential tails are a result of the detailed material properties of91

sea ice or simply of the process of stacking.92

93

We consider a population of floes of equal size and of fixed thickness, occupying an area A.94

We define the thickness distribution g(h) such that g(h)dh is the fraction of the area A occupied95

by floes of thickness h. Open water is represented by floes of thickness zero. The dynamic inter-96

actions between floes are represented as a stacking process which combines a floe of thickness97

h1 with a floe of thickness h2 to create a single floe of thickness h1 + h2. We make the simplify-98

ing ”mean-field” assumption that any two floes in the domain may interact. The fraction of the99

region A which was occupied by the two floes is now occupied by the stacked floe of thickness100

h1+h2 and a floe of thickness zero (open water). As will be detailed in Section 4, while a floe of101

thickness zero effectively does not participate in dynamics of the stacking process, the inclusion102

of a thermodynamic component of the model which grows and melts the ice towards a seasonal103

equilibrium means that open water is a source of new thin ice during the growth season which104

will then be available to participate in the stacking process.105

106

The representation in our model of the ice redistribution process as one of stacking is inspired by107

the dynamics of Smoluchowski Coagulation Models (SCMs), which are natural tools for study-108

ing the relationship between the physical processes that drive the evolution of populations of109

ice and their statistical features. In its simplest form, the SCM is a system of ordinary differen-110

tial equations describing the dynamics of a population of individual elements (usually referred111

to as ‘particles’) defined by their ‘mass’ which can interact with each other by combining to112

form larger particles. The SCM paradigm can be naturally extended to include fragmentation113
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processes, wherein a particle dissociates into two smaller particles. Having demonstrated their114

utility as a tool in statistical mechanics, SCMs are a well-studied family of equations which115

admit analytical solutions in some instances. Such models are potentially of great use for the116

study of sea ice populations, in particular providing insight regarding the parameterisations of117

thickness redistribution processes in sea ice components of GCMs.118

119

In this paper we first provide a brief overview of the behaviour of SCMs (Section 2). We then120

examine an earlier model of sea ice thickness dynamics Thorndike [2000] which represents the121

redistribution as a special case of an SCM (Section 3). To provide an illustration of the potential122

that the SCM formulation shows in sea-ice modelling, we then demonstrate how a simple SCM123

model of sea ice thickness distribution dynamics captures the essential features of the thickness124

distribution tail independent of the parameterisation of the stacking process rate (Section 4).125

This model is not strictly an SCM, but augments an SCM core representation of redistribution126

with parameterisations of thermodynamic processes and open water formation. An extension of127

these results to the distribution of floe sizes is presented in Section 6, followed by a discussion128

and conclusions in Section 7.129

2. Smoluchowski Coagulation Models

The SCM was derived in the early 20th century and describes the dynamics of a population130

of particles of varying mass which may combine with each other (coagulate) in pairs to form131

more massive particles. First used to describe statistical mechanical processes in gases, the co-132

agulation model has been extensively studied and has demonstrated utility in a variety of areas133

in applied mathematics, ranging from astronomy to population genetics. While it is possible to134

describe the type of system for which the SCM was developed using a model which includes135
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spatial information, for the purposes of simplicity and tractability, the SCM does not include136

the location or velocity of individual particles. Instead, the rate of combinations of particles of137

masses x and y is determined by the number of particles of each mass and the masses of the138

particles.139

140

Particle masses may be discrete or continuous. The interaction rule states that two particles141

of mass x and y may interact (‘coagulate’) to create a single particle of mass x + y. In the case142

where the particle masses are discrete, they may be enumerated by the natural numbers. We143

may write a set of functions, uk(t), the kth element of which gives the number of particles of144

mass k at time t. We may then write the set of coupled differential equations for the discrete145

SCM:146

duk(t)
dt
=

1
2

k−1∑
j=1

K(k − j, j)u j(t)uk− j(t) − uk(t)
∞∑
j=1

K( j, k)u j(t). (1)

The kth equation describes the time rate of change of the number of particles of mass k. The147

first term on the right hand side is a source term, which accounts for all possible ways to make148

particles of mass k by combining particles of mass j and k − j. The second term on the right is149

the sink term, covering all of the possible combinations that a particle of mass k may make with150

other particles.The rate at which interactions occur is determined by a kernel K(x, y), which151

encodes the detailed physical behaviour of the ”particles” in the system. The kernel is a repre-152

sentation of the spatially-averaged microscopic dynamics of the system under study. A detailed153

example of the derivation of a kernel from specific microscopic physics is found in Hammond154

et al. [2007]. The kernel K should be symmetric in its arguments, as it is assumed that the only155

factor which affects the rate at which particle interactions occur (besides the particle number)156

is their mass. The symmetry of K requires the insertion of a factor of 1/2 before the source157
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term in order to avoid double-counting of interactions. Examples of SCM kernels arising from158

particular physical problems may be found in Aldous [1999].159

160

The continuous analogue of Eqn. 1 uses a single function u(x, t) to describe the number density161

of the population, with dynamics described by the integro-differential equation:162

∂

∂t
u(x, t) = C(u) (2)

where163

C(u) =
1
2

∫ x

0
K(x − x′, x′)u(x′, t)u(x − x′, t)dx′ − u(x, t)

∫ ∞

0
K(x′, x)u(x′, t)dx′. (3)

As with the discrete equation, the first term on the right hand side is the source term, the second164

is the sink term, and K(x, x′) is a symmetric rate kernel.165

2.1. Analytic Solutions

The appeal of developing a model of sea ice thickness dynamics based on the SCM formula-166

tion is its simplicity and universality. It is a generic representation of a system in which smaller167

elements combine to form larger ones. A variety of physical systems may be modelled by168

choosing the appropriate kernel. Although the system is inherently non-linear, there are some169

kernels for which it admits a simple analytic solution given initial conditions in which all par-170

ticles are of a single mass (uk∗(0) = M for k = k∗, and zero otherwise in the discrete case; and171

u(x, 0) = δ(x0) for some x0 in the continuous case) Aldous [1999].172

173

For a range of analytic forms of K(x, y) for which analytic solutions can be determined, these174

solutions (discussed in detail the Appendix) are approximately exponential in form. That these175

near-exponential populations arise from SCMs with a variety of rate kernels suggests that the176
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robustness of the exponential tail of sea ice thickness may simply be a consequence of the re-177

distribution dynamics naturally being expressed as such a model.178

179

It is important to note that SCMs conserve mass but not the population size, and the total180

number of particles decreases with time as they coalesce. The SCM framework may be suitable181

to describe the way process of ice redistribution form ridge structures, but it does not include182

the relevant process of the formation of open water through the dilation of the pack which can183

accompany redistribution, or thermodynamic ice thickness evolution. The nature of the dynam-184

ics described by SCMs precludes the possibility of the creation of particles in the lowest mass185

category and the decrease in the total number of particles results from the lack of any source186

terms for particles of the smallest mass in either Eqn. 1 or Eqn. 2. For this reason, the SCM187

on its own cannot provide a complete description of the dynamics of the normalized sea ice188

thickness distribution, and we must consider additional terms, as will be discussed in Section 3.189

190

To further illustrate the connection between the solutions of SCMs and exponential distribu-191

tions, we can consider the statistical features of the population dynamics described by constant192

coagulation kernel SCMs. It was already noted that as a result of the steady decrease in the193

number of particles in the population, we cannot interpret uk as a probability distribution. How-194

ever, we may look at the distribution at a particular time by normalising each uk(t) by the total195

number of particles at that time. With a constant coagulation kernel, differential equations for196

the moments of the distribution of particle masses at time t = t∗ may be derived, and their197

asymptotic behaviour analysed Frenklach [1985]. The moments about zero of the probability198
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distribution arising as a solution may be written as199

µ′n(t) =
mn(t)
m0(t)

. (4)

with mr(t) =
∑

k kruk(t). When K = 1 in Eqn.1 the time evolution of the mk(t) is given by:200

d
dt

m0(t) = −1
2

m2
0 (5)

d
dt

m1(t) = 0 (6)

d
dt

mk(t) =
1
2

k−1∑
j=1

(
k
j

)
m j(t)mk− j(t) k > 1. (7)

These equations may be solved given a set of initial conditions {mi,0}. One may write expressions201

for the mk(t) in terms of these initial conditions,202

m0(t) = (1 + t/2)−1

m1(t) = m1,0

m2(t) = m2,0 + m2
1,0t

m3(t) = m3,0 + 3m2,0t + 3t2/2

The moments about zero, µ′k may be then be calculated from the mk(t). From these terms, the203

moments of the the mass distribution at a particular time may be calculated: the mean is given204

by µ = µ′1, the variance by σ2 = µ′2 − (µ′1)2, and so on. With the initial condition that the entire205

population is comprised of particles of the smallest mass, mi,0 = 1, we may obtain expressions206

for the moments of the distribution which tend asymptotically towards those of the exponential207

distribution Frenklach [1985]. Furthermore, it is possible to estimate the rates of convergence208

of the system’s moments. These exact results require the initial conditions to have all particles209

concentrated in the lowest thickness category, which makes the description of convergence to210
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an exponential distribution analogous to descriptions of the growth by redistribution processes211

of a population of ice in a region that is ice-free in the summer, and consequently populated by212

level ice of a single thickness at the start of the growth season.213

3. A Case Study: Thorndike’s Pseudo-SCM

An idealised model exploring the dynamics of the sea ice thickness distribution g(h) un-214

der the combined action of ridging and thermodynamic forcing was introduced by Thorndike215

Thorndike [2000]. This model demonstrates that the exponential tail of g(h) arises in a simple216

system that assumes a fixed population of ice ‘particles’, each of a certain thickness. An ice217

particle of thickness x ‘ridges’ with a particle of thickness y to create a particle of thickness218

x + y and one of thickness 0 (open water). This formulation is extremely similar to an SCM,219

although this connection was not made in Thorndike [2000]. Thorndike’s model differs from220

an SCM only in the addition of the δ function term to create ice of thickness zero (open water),221

and in the inclusion of a representation of thermodynamically driven growth and melt.222

223

Mathematically, Thorndike’s system may be written224

∂g
∂t
= −∂( f g)

∂h
+ r

[
δ(h) − 2g(h) +

∫ h

0
g(h′)g(h − h′)dh′

]
. (8)

The first term on the right hand is the annual average thermodynamic growth and ablation rate,225

given by226

∂( f g)
∂h

= F
∂(H − h)g
∂h

, (9)

where H is the thermodynamic equilibrium thickness and F is a coefficient which determines227

the rate at which ice approaches the thermodynamic equilibrium thickness. The terms arising228

from ice-ice interactions are all within the square brackets. The rate of these interactions scaled229
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by a constant r, which is independent of the thickness of the ice involved. In the terminology230

of the SCM, this corresponds to a constant kernel K(x, y) = r. The delta function represents231

the creation of open water when two members of the population combine. This open water232

subsequently freezes over and thus acts as a source for thin ice. The integral is the source term233

for ice of thickness h, associated with ridging. The term −2g(h) is a sink term, representing the234

transfer of ice of thickness h to higher thicknesses through the ridging process. This is formally235

identical to the sink term in the SCM with a uniform kernel, as g(h) is a normalised probability236

distribution and so237 [∫ ∞

0
g(h′)dh′

]
g(h) = g(h). (10)

By including the delta-function, the integral over thickness of the redistribution terms, (i.e., the238

net effect on g(h) of the redistribution process), is formally zero, viz.,239 ∫ ∞

0

[
δ(h) − 2g(h) +

∫ h

0
g(h′)g(h − h′)dh′

]
dh = 0.

The thermodynamic term in Eqn. 8 also integrates to zero over h,so there is no difficulty in240

interpreting g(h) as a normalized probability distribution. As shown in Thorndike [2000], both241

approximate analytic calculations and numerical simulation demonstrate that in steady state this242

model predicts an exponential tail for g(h).243

244

As we have remarked, the pure SCM will not normally serve as a model of the dynamic be-245

haviour of a probability distribution (in this case the of sea ice), as, in Eqn.2 (or Eqn.1 for the246

discrete case) it does not conserve the integral247

N(t) =
∫ ∞

0
u(x, t)dt. (11)
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As noted above, the delta function term in Thorndike’s model represents the creation of open248

water at the same rate as redistributions are occurring, thus conserving total particle number. We249

can think of the populations of ice as a set of floes, each completely occupying an individual cell250

of a fixed grid. Redistribution is the process of removing a floe from one grid cell and adding its251

thickness to a floe in another cell. The difference between the redistribution processes described252

by the SCM and Thorndike’s model may be understood as the difference between generating a253

thickness ‘distribution’ by examining only the cells occupied by ice (the SCM); and generating254

the population by counting all grid cells, including the ones which are occupied by open water255

(Thorndike’s representation of redistribution). Given the success of Thorndike’s model at cap-256

turing the essential features of the equilibrium thickness distribution, it is worthwhile to extend257

this earlier analysis using perspectives provided by the SCM.258

259

dgk(t)
dt
= −∂Tgk(t)

∂h
+ r

δk,1 − 2gk(t) +
k∑

j=1

g j(t)gk− j(t)

 . (12)

260

4. The Generalised Thorndike Model

A general model of sea ice thickness distribution evolution containing an SCM component to261

describe the dynamic interactions between floes can be built using similar assumptions to those262

Thorndike adopted. The common aspect of the SCM and Thorndike’s model is the description263

of ridging as the combination of ice of thickness k and ice of thickness j to form ice of thickness264

k+ j at a rate dependent on k, j, and the quantity of ice of those thicknesses. The generalisation265

of Eqn.8 to include an arbitrary rate kernel yields is266

∂g(h, t)
∂t

=
∂T (g)
∂h

+C(K, t)δ(h)+
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1
2

∫ x

0
K(h′, h − h′)g(h′, t)g(h − h′, t)dh′ −

∫ ∞

0
K(h, h′)g(h, t)g(h′, t)dh′, (13)

where T (g) is a seasonally-dependent thermodynamics function that drives ice towards a cyclo-267

stationary equilibrium (limit cycle), at a rate dependent on the thickness (h). Generalization of268

the rate kernel requires the introduction of the factor C(K, t) in the open water source term, in269

order to ensure that g(h) remains normalized. We generalise the source term for the creation270

of ice of thickness 0 by calculating the rate at which all redistributions are occurring. With a271

general kernel, K(x, y), the coefficient of the δ term takes the form272

C(K, t) =
∫ ∞

0

[∫ ∞

0
K(h, h′)g(h, t)g(h′, t)dh′

]
dh. (14)

Note that when K(x, y) = 1, the coefficient of δ(h) in Eqn. 13 is equal to 1 (as in Eqn. 12); this273

follows from the normalisation of g(h, t).274

275

In specifying the rate at which the stacking process occurs, the kernel represents both the exter-276

nal forcing and the ice response to the forcing. In a situation where there are no wind or currents277

acting on a region of ice there will be no redistribution events, in which case the dynamic com-278

ponent of our model would be zero, i.e., K(h, h′) = 0. Similarly, if the ice was (hypothetically)279

strong enough to resist deformation and piling, the kernel would similarly be zero. While the280

two aspects of the physics of the situation are difficult to isolate from each other, the overall281

scale of the kernel may be considered to be related to the strength of the external forcing rela-282

tive to the strength of the ice, while the derivative of the kernel, ∂K/∂h reflects the way in which283

the ice strength as a function of its thickness is represented. By specifying a kernel which is284

not a function of time, we assume an external forcing which does not change appreciably on285

the timescales over which g(h) evolves. In our choice of the kernel, we will consider both the286
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functional form of K and its overall scale.287

288

The discrete form of Eqn.13 is the system of equations289

∂gk(t)
∂t
= U(T (gk)) +C(K, t)δk,1 +

1
2

k−1∑
j=1

K(k, k − j)g j(t)gk− j(t) −
∞∑
j=1

K(k, j)gk(t)g j(t). (15)

where gk(t) is the fraction of the population of thickness class k. The function C(K, t) is the290

discretised analogue of Eqn.14, and the thermodynamic term U(T (gk)) is an upwind gradient291

operator acting on T (gk).292

293

As we have already discussed, distributions with exponential tails (at least approximately) occur294

naturally in coagulation models over a broad range of kernel forms. For numerical implementa-295

tion we will truncate the equations at some maximum thickness category, which we may choose296

to be sufficiently large that ice of that thickness is never created (in practice). Based on observa-297

tions of thickness distribution, it is reasonable to simulate a population which does not produce298

ice above 20m and truncate the population at this thickness.299

300

We numerically integrate this model using a forward finite difference scheme (Eqn. 15) with301

200 thickness categories, each representing a 0.1m thickness increment:302

gt+1
k = gt

k + ∆t

U(T (gk(t), t)) +

 ∞∑
k=2

 k−1∑
j=1

K(k, k − j)g j(t)gk− j(t)


 δk,1

+
1
2

i−1∑
j=1

K(k, k − j)gt
jg

t
k− j − gt

k

200−k∑
j=1

K(k, j)gt
j

 (16)

Thermodynamic forcing is represented as a simple cyclical function based on observations of303

sea ice growth and ablation rates Maykut and Untersteiner [1971], transferring a portion of ice304

in each thickness category to one or other of its neighbouring bins, depending on the thickness305
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of the ice and the season. The flux of ice in each thickness category in a single time step is given306

by307

T (gk) = [S (t)W1(k) + {1 − S (t)}W2(k)] gk, (17)

where308

W1(k) = 0.1exp(−1.7k∆h) − 0.01 m day−1

W2(k) = 0.01exp(−0.01k∆h) m day−1

where ∆h is the width of each thickness category and309

S (t) =
{

1 − t/180 0 ≤ t < 180
t/180 − 1 180 ≤ t < 360 .

with time t in days. The functions W1 and W2 are approximations of the winter and summer310

growth curves given in Maykut and Untersteiner [1971], as illustrated in Fig. 2. Mass lost from311

each thickness category due to thermodynamic processes is accounted for in its neighbouring312

categories (higher thicknesses when T (k) is positive and lower when it is negative). This form313

of the thermodynamic forcing is idealised, in line with the rest of the formulation of the model.314

By varying the strength of the thermodynamic term, the interplay between dynamic and ther-315

modynamic forcing may be explored. For most of the model simulations which we perform, the316

strength of the thermodynamic term relative to the redistribution terms is small, and the advance317

and retreat of the tail of the distribution over the course of the seasonal cycle is not large.318

319

5. Results

Our analysis of the behaviour of the model within the context of the SCM formulation re-320

lies upon the assumption that the coagulation terms are dominant for ice thicknesses above the321
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thermodynamic equilibrium. Evidence to support this assumption can be seen by comparing322

the magnitudes of the coagulation and thermodynamic terms in Fig. 3, produced using the final323

timestep of a numerical simulation of Eqn. 15 with a linear kernel (K = r(h + h′)). Because324

the model includes a seasonally-evolving thermodynamics component, it will never reach equi-325

librium, and so the thermodynamic and SCM terms will not add to exactly zero. The first plot326

in Fig. 3 displays the magnitudes of the SCM and thermodynamic terms at the final time step327

of the simulation over the entire thickness range. The second (lower) plot is a semilog plot,328

showing the absolute values of the two components for ice thicknesses greater than 3m. For329

ice thicknesses above 3m, the SCM component of the model is a minimum of two orders of330

magnitude larger than the thermodynamic component, rising to over 4 orders of magnitude at331

20m. The large differences in the magnitude of the two components, particularly in the thicker332

ice where the tail forms lead us to conclude that the behaviour of the model in forming a quasi-333

exponential tail may be reasonably compared with (and attributed to) the behaviour of an SCM334

model.335

336

Because the model is computationally efficient, we may perform a large number of numerical337

simulations, allowing us to thoroughly compare the predictions of this model to Thorndike’s,338

and to examine how altering various parameters affects the model output. There are two major339

sensitivities to be explored: the functional form of the transfer kernel K(k, j), and the strength340

of the thermodynamic forcing relative to that of mechanical redistribution. A variety of kernels341

may be tested, in order to assess the sensitivity of model predictions to this choice. From the dis-342

cussion in Section 2, we do not expect that this sensitivity will be strong (for reasonable choices343

of kernel form). As part of our experimentation with the kernel, we investigate the inclusion of344
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a representation of the rafting process in which the ice is transferred laterally onto adjacent ice345

without having first to be fragmented. This phenomenon occurs in thin ice, which is flexible346

enough for rafting to be possible. In our model, we may represent rafting by specifying larger347

values of the kernel K(k, j) for the dynamics of ice below a certain thickness.348

349

We may use the same thermodynamic routine in both the Thorndike model and our model.350

In contrast with the focus on equilibrium solutions in Thorndike Thorndike [2000], the time-351

dependence of the thermodynamic forcing in the present study allows us to consider evolution352

of the thickness distribution across the seasonal cycle. In the simulations which we perform,353

using T (g(h)) as defined by Eqn.17, the strength of the thermodynamic growth and melt relative354

to the redistribution is small, and the advance and retreat of the tail of the population is not large355

following its initial formation.356

357

Simulations suggest that the choice of coagulation kernel has little qualitative effect on the pop-358

ulation (Fig. 4). The set of kernels considered is presented in Table 1; note that for pure SCMs359

the constant, additive, or multiplicative kernels admit analytic solutions. In each instance the360

rate scaling coefficient r is adjusted so that the results of the simulation are similar in the extent361

and slope of the exponential tail produced during the simulation.By including the additive and362

multiplicative cases, which describe population dynamics in which larger ”particles” interact at363

a larger rate than smaller ones (unlike the dynamics of sea ice populations) we provide further364

evidence that the addition of the thermodynamic and source terms does not alter the qualitative365

nature of the simulated populations, and demonstrates the robustness of the quasi-exponential366

distribution under a variety of qualitatively different representations of the redistribution pro-367
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cess.368

369

370

We may also implement a crude representation of rafting by constructing K(x, y) to take371

larger values for thin ice, to represent the lower energy required to cause thin ice to over-ride372

neighbouring floes. Using the constant coagulation kernel, we double the value of the constant373

for all ice thickness categories below a set thickness hR,374

K(x, y) =
{

2r h < hR

r h ≥ hR.
(18)

Although transfer rates of thin ice are enhanced, the quasi-exponential form of the solution is375

not affected (Fig. 5). The increased transfer rates of thin ice speed up the formation of the376

extended quasi-exponential tail, to a degree dependent upon the number of thickness categories377

with a higher transfer rate. Small values of the rafting index have a smaller effect on the simu-378

lation because the population of thin ice is naturally evacuated by the thermodynamic process379

in the model. As the population of raftable ice is depleted, the effect of the rafting terms will380

become less important to the evolution of the system.381

382

The relative strengths of the thermodynamic and dynamic (SCM) terms are central in determin-383

ing quantitative features of the simulated ice thickness distribution. We compare simulations384

with differing relative strengths of these components in Fig.6. Using the constant coagulation385

kernel, K = R−1
T , we may examine the effect on simulations of varying the relative strength of386

the two components. The value of RT clearly determines the slope of the tail of the popula-387

tion. When the thermodynamic term is relatively weak (RT < 1), the coagulation component388

of the model dominates, and the slope of the tail becomes nearly flat. Conversely, under strong389
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thermodynamic forcing when R(T ) > 1, the slope of the tail decreases. At large values of RT390

(RT > 5), thermodynamics dominate the simulation, producing strongly cyclical behaviour in391

response to the seasonal thermodynamic forcing.392

393

6. Fragmentation And Self Similarity

In the previous section, we discussed the relationship between the SCM and Thorndike’s sea394

ice model Thorndike [2000], and examined the utility of the SCM as a component of a model395

describing the evolution of the thickness distribution of a population of sea ice. While this is the396

main focus of our work, it is worthwhile to bring to attention another aspect of sea ice modelling397

in which an SCM perspective may prove useful.398

399

Measurements show that the distribution of floe sizes typically follows a log-normal distribution400

Rothrock and Thorndike [1984],Hopkins [1998]. It is known that log-normal distributions have401

the property of self-similarity. It has also long been known that the fractile behaviour of brittle402

solids typically produces a population of fragments whose size follows a power law Turcotte403

[1986]. Systems of equations that produce self-similar solutions are of particular interest in404

modelling brittle fracture. Through the examination of observations of sea ice failure behaviour405

over a broad range of scales, it has been noted that the pressure threshold for ice failure followed406

a power law over 10 orders of magnitude in scale Sanderson [1988] (Eqn. 19), suggesting that407

the processes at work in sea ice fragmentation display self-similarity.408

P f ail = C(contact area)−s, (19)
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where s is a constant between 1/4 and 1/2 Sanderson [1988].409

410

A simple renormalised group (RNG) method of modelling brittle failure in ice was developed411

in Palmer and Sanderson [1991]. From this simple model it is possible to produce an estimate412

of the dependence on area of the failure pressure of ice, with the prediction that s = 1/2. More413

recently a model of fragmentation processes in ice which can lead to log-normal distributions414

of floe size was developed by Lensu Lensu [1997]. A population of ice occupying an area N(t),415

with N(t) f (x) floes of area x at time t evolves according to416

∂

∂t
N(t) f (x) = 2N(t)

∫ 1

x
α(z)β(z→ x) f (z)dz − N(t)α(x) f (x), (20)

where β(z → x)dx is the probability that a floe of area z produces a floe of area x through417

fragmentation, and α is the rate at which floes of area x themselves fragment. Lensu assumed418

that α = 1, and that fragmentation behaviour is area independent. We may then write419

β(z→ x) = (1/z)β(x/z) (21)

so that β(x)dx is a probability distribution defined for x ∈ [0, 1].420

421

The SCM may be expanded to include the process of spontaneous fragmentation of members422

of the population into smaller particles. In the continuous case, the equations describing a423

coagulation-fragmentation system take the form424

∂

∂t
m(x, t) = C(m) +

∫ ∞

x
L(x, x′)M(x′, t)dx′ − m(x, t)

∫ x

0
L(x, x′)

x′

x
dx′. (22)

The second term on the right hand side of Eqn. 22 represents the formation of particles of425

mass x from larger particles breaking down, and the third term represents the fragmentation426

loss from the population of members of mass x. The presence of the term x′
x in the final integral427
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ensures that the system conserves mass. The function L(x, x′) is the fragmentation kernel, and is428

analogous to the coagulation kernel, although it is not symmetric in its arguments (i.e., with x′ <429

x, particles of mass x′ cannot form particles of mass x through fragmentation). For convenience,430

we write the full equation of a fragmentation-coagulation system in short as431

∂

∂t
m(x, t) = C(m) + F(m), (23)

where we now write m(x, t) is the number of floes of area x at time t.432

433

The structure of Lensu’s model (Eqns. 20, 21) corresponds to a pure fragmentation model with434

constant kernel L(q, y) = 1. It is shown in Lensu [1997] that this system admits the solution435

G(p) = exp
(
2
∫ 1

0
qpβ(z)dzt − 1

)
, (24)

N(t) = N0exp(t) (25)

where G(p) is an integral transform:436

G(p) =
∫ 1

0
xp f (q)dq.

Analysis of the solution as t → ∞ reveals that the distribution of fragment sizes, f approaches a437

log-normal form Lensu [1997]. When either F(m) or C(m) is zero in Eqn. 23, the system does438

not display a stationary solution except in the trivial case when both are zero. It has been proved439

(Escobedo et al. [2005], Fournier and Laurenot [2005]) that a broad class of kernels admit self-440

similar solutions for both pure coagulation (F(m) = 0) and pure fragmentation (C(m) = 0)441

models, where a self-similar solution u(x, t) can be written in terms of a scaling function s(t):442

m(x, t) = s−2(t)v(xs−1(t)). (26)
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Fragmentation functions of the form443

b(y, y′) = b0(y)B(y′/y) (27)

with444

b0(y) = yβ (28)

γ ≥ −1 (29)

and B(·) is (effectively) a probability distribution defined on the interval [0, 1] (as y′ < y) were445

considered in Escobedo et al. [2005]. The model considered by Lensu in Lensu [1997] belongs446

to the class of models considered in Escobedo et al. [2005] with β = −1 in Eqn. 28, and the447

results in Escobedo et al. [2005] apply to Lensu’s work.448

449

Given that the fragmentation SCMs are well studied, and there are general results about their450

behaviour which apply to existing sea ice models, it is likely that there is further value in the use451

of SCMs in modelling sea ice fracture processes, both as tools for modelling, and as conceptual452

objects used to further our understanding of the processes at work, and the distributions they453

generate.454

455

7. Discussion and Conclusions

The SCM provides a powerful framework to address many open questions in sea ice mod-456

elling. The simplicity of the SCM allows the study of a wide variety of parameterisations of457

coagulation and fragmentation processes without creating strong demands on processor time,458

and the conceptual clarity of the SCM makes it a useful tool in studying sea ice redistribution.459

The robust presence of exponential and quasi-exponential populations produced by models with460
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a wide variety of rate kernels, suggests that the description of the redistribution process given461

by the SCM is sufficient for the production of ice thickness populations which are qualitatively462

similar to those observed. Clearly, the implementation of a SCM formulation in sea ice thick-463

ness distribution modelling in anything other than an idealised context must be adjusted to best464

represent the physical realities of the system under study. In the types of models we have con-465

sidered, the ridging events are viewed as analogous to the interaction of two particles in the466

SCM. The ‘block-stacking’ representation of ridging is an over-simplification, but the coag-467

ulation model formalism provides a useful idealised framework for the study of the interplay468

between mechanical and thermodynamic process in sea ice.469

470

As can be inferred from the analytic solutions of the SCM, exponential and quasi-exponential471

distributions arise naturally as a feature of the equations over a broad range of kernel speci-472

fications. That said, the rate kernels for which analytic solutions exist are not suited for sea473

ice modelling, particularly as the additive and multiplicative kernels model systems in which474

larger particles interact more frequently than smaller ones. While the constant kernel, K = 1,475

considered by Thorndike, is too simple to be a representation of the physical reality of ridging,476

it is at least not manifestly unphysical. Numerical simulations with a variety of rate kernels477

demonstrate that the quasi-exponential tails arise even in the case where these kernels do not478

admit analytic solutions.479

480

While the thermodynamic term in our model is orders of magnitude smaller than the coagu-481

lation term for thick ice (as shown in Fig. 3) , our work nevertheless demonstrates the need for a482

balance between the thermodynamic forcing and the tendency of the ridging process to increase483
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ice thickness in an unchecked fashion Thorndike [2000]. A similar conclusion regarding the484

relationship between dynamics and thermodynamics is obtained in much more detail in Bitz485

and Roe [2004], using a viscous-plastic basin-scale model. There may be value in the use of486

simple coagulation models to further explore this aspect of sea ice models, as SCMs have been487

studied extensively and there is an extensive body of literature on their behaviour. With a firm488

understanding of the behaviour of both the thermodynamic and dynamic components of such a489

model, efforts could focus on the effect of their interaction on the population statistics.490

491

Investigation of the model response to changes in the kernel intended to reflect the differences492

between the processes of rafting and ridging has shown that the model is only weakly sensitive493

to this aspect of its construction. Future work on this aspect of the model involves simulations494

using kernels which represent the rafting process as being more distinct from ridging redistri-495

butions. Model response to changes in the representation of rafting is important when studying496

the state of the thickness distribution of ice populations in scenarios which are dominated by497

rafting, such as are likely to occur in a future with a stronger melt season. By modifying the498

thermodynamic component of the model to represent predicted conditions, the model could be499

used to study the potential changes in the ice thickness distribution which would occur in a500

population dominated by rafting-type redistributions.501

502

While it is beyond the scope of the present work, the models developed in this paper would503

be of greater utility and practical application with the relation of their components to measur-504

able quantities of the ice pack. While we have shown that the exact specification of the kernel is505

not of primary importance in determining the shape of the thickness distribution, in order to use506
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the model to predict the behaviour of populations of ice, the approximate maximum magnitude507

of the kernel must be related to observed redistribution rates in ice. To obtain data-based esti-508

mates of the coagulation kernel one avenue might be to examine time series of satellite imagery,509

in order to estimate the rate of ridge formation. By complimenting this data with measurements510

of thickness distributions from the same area, either gathered using ice profiling sonar or by511

direct field measurements, K(h, h′) could potentially be suitably constrained. Another method512

which could be used is the tuning of the SCM-based model using the output of a small-scale513

ice dynamical model, such as those developed by Hopkins Hopkins [1998] to estimate rates of514

ridge formation and their thickness dependence.515

516

In addition to our examination of the coagulation model, we have compared the related frag-517

mentation model with work on sea ice floe size distribution, and shown that work done by518

Lensu Lensu [1997] is a form of fragmentation model for which the mathematical properties519

are understood, and which display many of the features we seek in a model of the floe size520

distribution. The derivation of a model which we have shown to be mathematically equivalent521

to a fragmentation model in the literature, coupled with the known mathematical properties of522

this type of system suggest that further investigation of fragmentation models could be valuable.523

524

The persistent presence in sea ice populations of clear statistical features, such as the expo-525

nential tail of the thickness distribution and the log-normality of floe size distribution, begs the526

question of the processes leading to these properties. It is known that the detailed dynamic527

interactions which drive the evolution of the population are complex due to the nature of the528

material. As we have shown, the SCM formalism (appropriately augmented with terms rep-529

D R A F T July 5, 2011, 3:22pm D R A F T



X - 28 GODLOVITCH ET AL.: COAGULATION MODELS AND SEA ICE

resenting thermodynamic processes and the formation of open water) presents an appealingly530

simple and robust tool which may provide a deeper understanding of the processes which drive531

the statistics of sea ice populations. In Godlovitch et al. [2011] we develop a model of sea532

ice thickness distribution dynamics which treats redistribution in a similar fashion to the mod-533

els explored in this work, but which features redistribution processes directly informed by our534

understanding of the physical properties of sea ice, and its observed redistribution behaviour.535

Appendix: Examples of SCMs with Exact Solutions

The existence of analytic solutions to some SCMs increases their appeal as a modelling tool.536

Study of the analytic solutions of SCMs can yield insight into the behaviour which may be537

produced in a model which includes an SCM component. When K( j, k) = 1, the discrete SCM538

(Eqn. 1) has the solution539

uk(t) =
(
1 +

t
2

)−2 ( t
2 + t

)k−1
. (30)

For the linear rate kernel, K( j, k) = j + k, the solution to the discrete system is of the form540

uk(t) = e−tB(1 − e−t, k), (31)

where B(t, x) is the Borel distribution:541

B(t, x) =
(tx)x−1e−tx

x!
. (32)

When K(k, j) ∝ k j, the solution in the discrete case is given by542

uk(t) = i−1B(t, k), (33)

where B(t, k) is the Borel distribution again.543

544

For the constant kernel, the solution to the continuous equations (Eqn. 2) is u(x, t) = 4t−2e−2x/t.545
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When the kernel is a linear function, the continuous system has the solution546

u(x, t) =
1
√

2π
e−tx−3/2ee−2t x/2. (34)

Finally, the continuous system with multiplicative kernel, K(x, y), has the solution547

u(x, t) = (2π)−1/2x−5/2e−t2 x/2 (35)

The solution to the SCM with multiplicative kernel (Eqn. 33) can become unbounded in finite548

time under certain conditions. The solutions to the SCM with constant and additive kernels are549

bounded for all time, and they conserve the total size of the system (
∑∞

k=0 kuk(t),
∫ ∞

0
xu(x, t)dx)550

for all time viz., Shirvani and Roessel [1992].551
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Figure 1. Empirical mean thickness distribution, gµ(h) generated from sonar measurements of

ice thickness in January in the Beaufort Sea over the period 1990-2002
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Figure 2. Summer and winter growth and melt rates for ice from Maykut Maykut and Unter-

steiner [1971]
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Figure 3. Magnitudes of the SCM terms and thermodynamic term in Eqn. 15 with an expo-

nential kernel at the final timestep of the simulation displayed in the top left quadrant of Fig.4

Table 1. Rate kernels for coagulation model, with scaling constant r (note that r takes different

values for each kernel)

Run Number Kernel K(x, y)

1 r

2 rexp−β(x+y)

3 r(xy)

4 r(x + y)
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Figure 4. Coagulation model with kernels from Table 1. Population is plotted every 200 days

from runs of 2000 days, with color changing from green to red with increasing t.
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Figure 5. Coagulation model runs using a piecewise constant coagulation kernel with varying

rafting cutoff indices as indicated. Rafting ice has kernel K = 4, ice above the rafting cutoff has

K = 1. Timing and colouring as in Fig.4

D R A F T July 5, 2011, 3:22pm D R A F T



X - 38 GODLOVITCH ET AL.: COAGULATION MODELS AND SEA ICE

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=0.1

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=0.3

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=0.5

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=0.7

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=1

1e-006
1e-005
0.0001
0.001
0.01
0.1

1

0 2 4 6 8 10

g(
h)

h (m)

R=1.5

Figure 6. Coagulation model runs with varying relative strengths of thermodynamic and

dynamic components. Snapshots of population taken every 2000 timesteps for 20000 timesteps,

with the initial curve pure blue, and the final curve pure red.
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Figure 7. Solutions to SCM with K( j, k) = 1
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Figure 8. The Borel distribution with t = 0.1
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